skip to main content


Search for: All records

Creators/Authors contains: "Khaleghi, Behnam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Brain-inspired Hyper-dimensional(HD) computing is a novel and efficient computing paradigm. However, highly parallel architectures such as Processing-in-Memory(PIM) are bottle-necked by reduction operations required such as accumulation. To reduce this bottle-neck of HD computing in PIM, we present Stochastic-HD that combines the simplicity of operations in Stochastic Computing (SC) with the complex task solving capabilities of the latest HD computing algorithms. Stochastic-HD leverages deterministic SC, which enables all of HD operations to be done as highly parallel bitwise operations and removes all reduction operations, thus improving the throughput of PIM. To this end, we propose an in-memory hardware design for Stochastic-HD that exploits its high level of parallelism and robustness to approximation. Our hardware uses in-memory bitwise operations along with associative memory-like operations to enable a fast and energy-efficient implementation. With Stochastic-HD, we were able to reach a comparable accuracy with the Baseline-HD. Furthermore, by proposing an integrated Stochastic-HD retraining approach Stochastic-HD is able to reduce the accuracy loss to just 0.3%. We additionally accelerate the retraining process in our hardware design to create an end-to-end accelerator for Stochastic-HD. Finally, we also add support for HD Clustering to Stochastic-HD, which is the first to map the HD Clustering operations to the stochastic domain. As compared to the best PIM design for HD, Stochastic-HD is also 4.4% more accurate and 43.1× more energy-efficient. 
    more » « less
  2. Processing large amounts of data, especially in learning algorithms, poses a challenge for current embedded computing systems. Hyperdimensional (HD) computing (HDC) is a brain-inspired computing paradigm that works with high-dimensional vectors called hypervectors . HDC replaces several complex learning computations with bitwise and simpler arithmetic operations at the expense of an increased amount of data due to mapping the data into high-dimensional space. These hypervectors, more often than not, cannot be stored in memory, resulting in long data transfers from storage. In this article, we propose Store-n-Learn, an in-storage computing solution that performs HDC classification and clustering by implementing encoding, training, retraining, and inference across the flash hierarchy. To hide the latency of training and enable efficient computation, we introduce the concept of batching in HDC. We also present on-chip acceleration for HDC encoding in flash planes. This enables us to exploit the high parallelism provided by the flash hierarchy and encode multiple data points in parallel in both batched and non-batched fashion. Store-n-Learn also implements a single top-level FPGA accelerator with novel implementations for HDC classification training, retraining, inference, and clustering on the encoded data. Our evaluation over 10 popular datasets shows that Store-n-Learn is on average 222× (543×) faster than CPU and 10.6× (7.3×) faster than the state-of-the-art in-storage computing solution, INSIDER for HDC classification (clustering). 
    more » « less
  3. Today’s systems, rely on sending all the data to the cloud, and then use complex algorithms, such as Deep Neural Networks, which require billions of parameters and many hours to train a model. In contrast, the human brain can do much of this learning effortlessly. Hyperdimensional (HD) Computing aims to mimic the behavior of the human brain by utilizing high dimensional representations. This leads to various desirable properties that other Machine Learning (ML) algorithms lack such as: robustness to noise in the system and simple, highly parallel operations. In this paper, we propose \(\mathsf {HyDREA} \) , a Hy per D imensional Computing system that is R obust, E fficient, and A ccurate. We propose a Processing-in-Memory (PIM) architecture that works in a federated learning environment with challenging communication scenarios that cause errors in the transmitted data. \(\mathsf {HyDREA} \) adaptively changes the bitwidth of the model based on the signal to noise ratio (SNR) of the incoming sample to maintain the accuracy of the HD model while achieving significant speedup and energy efficiency. Our PIM architecture is able to achieve a speedup of 28 × and 255 × better energy efficiency compared to the baseline PIM architecture for Classification and achieves 32 × speed up and 289 × higher energy efficiency than the baseline architecture for Clustering. \(\mathsf {HyDREA} \) is able to achieve this by relaxing hardware parameters to gain energy efficiency and speedup while introducing computational errors. We show experimentally, HD Computing is able to handle the errors without a significant drop in accuracy due to its unique robustness property. For wireless noise, we found that \(\mathsf {HyDREA} \) is 48 × more robust to noise than other comparable ML algorithms. Our results indicate that our proposed system loses less than \(1\% \) Classification accuracy, even in scenarios with an SNR of 6.64. We additionally test the robustness of using HD Computing for Clustering applications and found that our proposed system also looses less than \(1\% \) in the mutual information score, even in scenarios with an SNR under 7 dB , which is 57 × more robust to noise than K-means. 
    more » « less